G-LISA® RhoA Activation Assay
Biochem Kit™
(Absorbance Based)

Cat. # BK124
Manual Contents

Section I: Introduction
 Assay Principle---4

Section II: Kit Contents---5-6

Section III: Reconstitution and Storage of Components-----------7

Section IV: G-LISA® Assay
 G-LISA® Grow Cells and Prepare Lysates------------------------8-10
 G-LISA® Assay Preparation-------------------------------------11
 G-LISA® Assay Protocol--12-13

Section V: Technical Support and Purchaser Notification
 Troubleshooting---14
 Limited Use Statement--15
Assay Principle

The RhoA G-LISA® kit contains a Rho GTP-binding protein linked to the wells of a 96 well plate. Active, GTP-bound Rho in cell/tissue lysates will bind to the wells while inactive GDP-bound Rho is removed during washing steps. The bound active RhoA is detected with a RhoA specific antibody. The degree of RhoA activation is determined by comparing readings from activated versus non-activated lysates. Inactivation of RhoA is generally achieved in tissue culture by a serum starvation step (see Technical Guide). A basic schematic of the steps involved in the G-LISA® is shown in Figure 1. Typical G-LISA® results are shown in Figure 2.

Choose Number of Wells

Prepare Your Lysate

Perform Assays

Collect Your Data

Figure 1: Simple and Quick Protocol

Figure 2: Typical G-LISA® Results

RhoA activation by calpeptin measured by G-LISA®. Swiss 3T3 (mouse) cells were serum starved for 48 hours and treated with calpeptin (Cat. # CN01; 0.1 mg/ml for 30 min) or carrier only (DMSO). 25 µg of cell lysates were subjected to the G-LISA® assay. Absorbance was read at 490 nm. Data are background subtracted. Background values for this assay are 0.1-0.25 OD.
This kit contains enough reagents for 96 assays. When properly stored, kit components are guaranteed stable for a minimum of 6 months.

Table 1: Kit Contents

<table>
<thead>
<tr>
<th>Reagents</th>
<th>Cat. # or Part # *</th>
<th>Quantity</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>96 well Rho-GTP binding plate</td>
<td>Part # GL25</td>
<td>12 strips of 8 wells</td>
<td>Desiccated 4°C</td>
</tr>
<tr>
<td>Anti-RhoA antibody</td>
<td>Part # GL01A</td>
<td>2 tubes, lyophilized</td>
<td>Desiccated 4°C</td>
</tr>
<tr>
<td>Secondary antibody - horseradish peroxidase conjugate (HRP)</td>
<td>Part # GL02</td>
<td>2 tubes, lyophilized</td>
<td>Desiccated 4°C</td>
</tr>
<tr>
<td>Rho control protein (constitutively active RhoA)</td>
<td>Part # RHCA</td>
<td>12 tubes, lyophilized</td>
<td>Desiccated 4°C</td>
</tr>
<tr>
<td></td>
<td>Similar to Cat. #</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R6301</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Lysis Buffer</td>
<td>Part # GL36</td>
<td>1 bottle, lyophilized</td>
<td>Desiccated 4°C</td>
</tr>
<tr>
<td>Binding Buffer</td>
<td>Part # GL37</td>
<td>1 bottle, lyophilized</td>
<td>Desiccated 4°C</td>
</tr>
<tr>
<td>Wash Buffer</td>
<td>Part # GL38</td>
<td>1 bottle, lyophilized</td>
<td>Desiccated 4°C</td>
</tr>
<tr>
<td>Antigen Presenting Buffer</td>
<td>Part # GL45</td>
<td>1 bottle, 30 ml</td>
<td>Room temperature</td>
</tr>
<tr>
<td>Antibody Dilution Buffer</td>
<td>Part # GL40</td>
<td>1 bottle, lyophilized</td>
<td>Desiccated 4°C</td>
</tr>
<tr>
<td>HRP Detection Reagent A</td>
<td>Part # GL43</td>
<td>1 tablet, silver pack</td>
<td>Desiccated 4°C</td>
</tr>
<tr>
<td>HRP Detection Reagent B</td>
<td>Part # GL44</td>
<td>1 tablet, gold pack</td>
<td>Desiccated 4°C</td>
</tr>
<tr>
<td>HRP Stop Solution</td>
<td>Part # GL80</td>
<td>1 bottle, 8 ml</td>
<td>4°C</td>
</tr>
<tr>
<td>Precision Red™ Advanced Protein Assay Reagent</td>
<td>Part # GL50</td>
<td>1 bottle, 100 ml</td>
<td>Room temperature</td>
</tr>
<tr>
<td></td>
<td>(available as 500 ml size Cat. # ADV02)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protease Inhibitor Cocktail</td>
<td>Cat. # PIC02</td>
<td>1 tube, lyophilized</td>
<td>Desiccated 4°C</td>
</tr>
</tbody>
</table>

* Items with part numbers (Part #) are not sold separately and available only in kit format. Items with catalog numbers (Cat. #) are available separately.
II: Kit Contents Cont’d

The reagents and equipment that you will require but are not supplied:

- Cold 4°C PBS pH 7.2 buffer (10 mM phosphate buffer pH 7.4, 140 mM NaCl, 3 mM KCl)
- Concentrated sulfuric acid (need to add 1 ml to HRP Stop Buffer)
- Cell scrapers
- Liquid nitrogen for snap freezing cell lysates
- Multi-channel or multi-dispensing pipettor for 25-200 µl range
- Multi-channel pipettor solution basins (available from VWR Cat. # 21007-970). Used for liquid handling.
- Vortex for mixing cell lysate and Binding Buffer solutions
- Two orbital microplate shakers. Optimal shaker speed is 400 rpm (200 rpm is the minimal speed required). One at room temperature and one at 4°C
- Microplate spectrophotometer (see Technical Guide)
Many of the kit components are provided in lyophilized form. Prior to beginning the assay, you will need to reconstitute several components as shown in Table 2:

Table 2: Component Storage and Reconstitution

<table>
<thead>
<tr>
<th>Kit Component</th>
<th>Reconstitution</th>
<th>Storage Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>96 well Rho-GTP binding plate</td>
<td>Keep the plate in the sealed bag with desiccant at all times. Reconstitution is not necessary prior to the start of the assay. If detached, pellets should be tapped to the bottom of the well prior to resuspension.</td>
<td>Store desiccated at 4°C</td>
</tr>
<tr>
<td>Anti-RhoA antibody</td>
<td>Centrifuge briefly to collect the pellet in the bottom of the tube. For each tube, dissolve the powder in 20 µl of PBS.</td>
<td>Store at 4°C</td>
</tr>
<tr>
<td>Secondary antibody HRP</td>
<td>Centrifuge briefly to collect the pellet in the bottom of the tube. For each tube, dissolve the powder in 80 µl of PBS. Do not use sodium azide in combination with this antibody as it will inactivate the HRP.</td>
<td>Store at 4°C</td>
</tr>
<tr>
<td>Rho control protein (12 tubes)</td>
<td>Each tube is good for one experiment. Reconstitution is not necessary until starting the assay (see Table 4).</td>
<td>Store desiccated at 4°C</td>
</tr>
<tr>
<td>Cell Lysis Buffer</td>
<td>Reconstitute in 100 ml of Milli-Q water. This solution may take 5-10 min to resuspend. Use a 10 ml pipette to thoroughly resuspend the buffer.</td>
<td>Store at 4°C</td>
</tr>
<tr>
<td>Binding Buffer</td>
<td>Reconstitute in 5 ml of Milli-Q water. This solution may take 5-10 min to resuspend. Use a 5 ml pipette to thoroughly resuspend the buffer.</td>
<td>Store at 4°C</td>
</tr>
<tr>
<td>Wash Buffer</td>
<td>Reconstitute in 1 L of Milli-Q water. This solid will take 45-60 min to resuspend. A magnetic stir bar and stir plate can be used.</td>
<td>Store at room temperature</td>
</tr>
<tr>
<td>Antigen Presenting Buffer</td>
<td>No reconstitution necessary.</td>
<td>Store at room temperature</td>
</tr>
<tr>
<td>Antibody Dilution Buffer</td>
<td>Reconstitute in 15 ml of Milli-Q water.</td>
<td>Store at 4°C</td>
</tr>
<tr>
<td>HRP Detection Reagent A</td>
<td>Resuspend tablet in 10 ml sterile distilled water. Aliquot into 10 x 1 ml volumes.</td>
<td>Store at -70°C NOTE: Do not store at -20°C</td>
</tr>
<tr>
<td>HRP Detection Reagent B</td>
<td>Resuspend tablet in 10 ml sterile distilled water. Aliquot into 10 x 1 ml volumes.</td>
<td>Store at -70°C NOTE: Do not store at -20°C</td>
</tr>
<tr>
<td>Precision Red™ Advanced Protein Assay Reagent</td>
<td>No reconstitution necessary.</td>
<td>Store at room temperature</td>
</tr>
<tr>
<td>Protease Inhibitor Cocktail</td>
<td>Reconstitute in 1 ml of dimethyl sulfoxide (DMSO) for 100x stock.</td>
<td>Store at 4°C. The cocktail will freeze at 4°C</td>
</tr>
<tr>
<td>HRP Stop Solution</td>
<td>Carefully add 1 ml of concentrated sulfuric acid (18M) to HRP Stop Solution. Check the box on the top of the bottle to indicate acid has been added.</td>
<td>Store at 4°C</td>
</tr>
</tbody>
</table>
IV: How to Grow Cells and Prepare Lysates

First time users should read the G-LISA Technical Guide, especially the description of lysate preparation which is critical for the success of the G-LISA assay. The G-LISA® kit uses 25 µl of lysate (0.4-2 mg/ml lysate protein concentration) per assay. To keep the assay in the linear range, we highly recommend using a lysate concentration of 0.5 mg/ml for the RhoA G-LISA®.

A) Growth and Treatment of Cell Lines

Cells should be plated and grown to desired confluency in appropriate culture conditions (consult literature for particular cell line). Confluent cells can be used experimentally, including for transfection, RNA interference, or serum-starvation, if appropriate. Prior to Rho stimulation, cells should be kept in a “controlled state” via serum starvation so that basal Rho activity is low. Optimal confluency prior to serum starvation and GTPase activation varies by cell line and should be determined empirically. Upon stimulation, Rho proteins are generally activated very rapidly and transiently (30 s to 30 min).

B) Rapid Processing of Cells to Prepare Lysates

GTP bound (active) Rho is a labile entity and the bound GTP is susceptible to hydrolysis during and after cell lysis, resulting in Rho inactivation. Rapid processing (<10 min) on ice is essential for accurate and reproducible results. The following guidelines should be followed (See Table 3 for preparing reagents needed for cell lysate preparation).

Washing

1. Retrieve culture dish from incubator, immediately place on ice, aspirate off media, and wash cells with ice-cold PBS to remove serum proteins.

2. Aspirate off all PBS buffer. This is essential so that the lysis buffer is not diluted.

Cell Lysis

To make lysate at a concentration between 0.4 to 2.0 mg/ml, adjust the amount of lysis buffer depending on cell and plate type. Empirically determine the exact lysis volumes for any given cell line. The time period between cell lysis and snap-freezing of lysates is critically important (no more than 10 min on ice). Take the following precautions:

1. Keep solutions and lysates embedded in ice so that the temperature is below 4°C.

2. Lyse cells in an appropriate volume of ice-cold cell lysis buffer.

3. Immediately harvest cell lysates with a cell scraper.

4. Transfer lysates into pre-labeled and pre-chilled 1.5 ml microfuge tubes on ice.

5. Immediately clarify lysates by centrifugation at 10,000 x g, 4°C for 1 min.
6. Save at least 20 µl of lysate on ice for protein quantification and 50-200 µl for RhoA quantification by western blotting or the Total RhoA ELISA (Cat. # BK150).

7. Snap-freeze 100 µl aliquots of all cell lysates in liquid nitrogen immediately after harvest and clarification. Store at -70°C. Lysates can be stored at -70°C for several months.

C) Measure Lysate Protein Concentration

1. Add 20 µl of each lysate or lysis buffer into disposable 1 ml cuvettes.

2. Add 1 ml of Precision Red™ Advanced Protein Assay Reagent (Part # GL50) to each cuvette.

3. Incubate for 1 min at room temperature.

4. Blank spectrophotometer with the lysis buffer at 600 nm.

5. Read absorbance of lysates samples.

6. Multiply the absorbance by 5 to obtain the protein concentration in mg/ml (see Technical Guide).

7. Calculate how much ice-cold lysis buffer is needed to equalize the cell extracts to give identical protein concentrations in each sample between 0.4-2.0 mg/ml. It is not necessary to equalize protein concentration if the sample variation is less than 10%.

The volume of cold cell lysis buffer to be added to the more concentrated samples can be calculated as follows:

\[
\frac{A - B}{B} \times (\text{volume of } A) = \text{____________________ µl}
\]

where \(A \) is the higher concentration lysates (mg/ml) and \(B \) is the concentration of the most dilute sample (mg/ml).

Technical Tip
Once an optimal protein concentration for the RhoA assay has been determined, it is easier to equalize all cell lysates to the optimal concentration at the time of lysate preparation and before freezing lysate aliquots. This eliminates the need to equalize frozen lysate samples immediately prior to performing the assay and lysates can simply be thawed and used in the G-LISA.
IV: How to Grow Cells and Prepare Lysates Cont’d

Table 3: Reagents Needed for Lysate Preparation

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precision Red™ Advanced Protein Assay Reagent</td>
<td>Place on the bench and use at room temperature.</td>
</tr>
<tr>
<td>1.5 ml microfuge tubes, labeled and chilled</td>
<td>Use for aliquoting lysates.</td>
</tr>
<tr>
<td>Ice buckets</td>
<td>Use to pre-chill reagents and scrape cells.</td>
</tr>
<tr>
<td>Protease Inhibitor Cocktail</td>
<td>Resuspend in 1 ml of dimethyl sulfoxide (DMSO) and keep at room temperature.</td>
</tr>
</tbody>
</table>
| Lysis buffer + protease inhibitors, ice-cold | a. Empirically determine volume of Lysis Buffer needed per culture vessel (see Technical Guide). We recommend a final lysate concentration between 0.4-2.0 mg/ml for initial experiments.
 b. Determine total volume of Lysis Buffer needed by multiplying the lysis volume per culture vessel (µl) by number of vessels x 1.3.
 c. Aliquot this volume of Lysis Buffer into a clearly labeled tube and place in ice.
 d. Add 10 µl of protease inhibitor cocktail per ml of aliquoted Lysis Buffer.
 e. Mix well and leave on ice.
 f. Lysis Buffer needs to be ice cold. |
| PBS pH 7.2, ice-cold | Phosphate-buffered saline is not provided in the kit. It should be prepared prior to the assay and placed on ice for at least 30 min to ensure that it is ice cold. |
| Cell scrapers | Use to harvest cells. |
| Liquid nitrogen | Use to snap-freeze lysate aliquots. |
IV: G-LISA Assay Preparation

First time users should read the G-LISA Technical Guide, especially the description of lysate preparation which is critical for the success of the G-LISA assay. The G-LISA® kit uses 25 µl of lysate (0.4-2 mg/ml lysate protein concentration) per assay. To keep the assay in the linear range, we highly recommend using a lysate concentration of 0.5 mg/ml for the RhoA G-LISA®. The reagents and equipment listed in Table 4 should be prepared prior to performing the assay.

Table 4: Assay Preparation for G-LISA®

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samples to be assayed</td>
<td>All experimental samples should be prepared prior to G-LISA assay preparation. The following instructions assume that frozen lysates are being used for the assay. Lysates should remain frozen until indicated in G-LISA assay protocol.</td>
</tr>
<tr>
<td>Rho-GTP binding 96 well plate</td>
<td>Remove plate from 4°C. Keep in its protective bag. Place on bench at room temperature for 30 min. Do not remove the plate (or strips) from the bag until immediately prior to the experiment.</td>
</tr>
<tr>
<td>Milli-Q water</td>
<td>30 ml placed on ice.</td>
</tr>
<tr>
<td>Binding buffer</td>
<td>Embed bottle in ice.</td>
</tr>
<tr>
<td>Protease Inhibitor Cocktail</td>
<td>Resuspend in 1 ml of dimethyl sulfoxide (DMSO) and keep at room temperature.</td>
</tr>
<tr>
<td>Lysis Buffer</td>
<td>Required for blank samples (60 ul per sample) and sample dilutions (if necessary). Add 10 µl of protease inhibitor cocktail per ml of Lysis Buffer. Mix well and leave on ice.</td>
</tr>
<tr>
<td>Rho control protein</td>
<td>Dissolve one tube in 500 µl Lysis Buffer and leave on ice. Use within 15 minutes.</td>
</tr>
<tr>
<td>Anti-RhoA antibody</td>
<td>Have primary antibody stock ready on ice. For each 8-well strip, you will need to mix 2 µl antibody with 500 µl Antibody Dilution Buffer. This dilution step should be performed just prior to use as detailed in assay protocol.</td>
</tr>
<tr>
<td>Secondary Antibody</td>
<td>Have secondary antibody stock ready on ice. For each 8-well strip, you will need to mix 8 µl antibody with 500 µl Antibody Dilution Buffer. This dilution step should be performed just prior to use as detailed in assay protocol.</td>
</tr>
<tr>
<td>Antibody Dilution Buffer</td>
<td>Place reconstituted buffer on the bench and use at room temperature.</td>
</tr>
<tr>
<td>Wash Buffer</td>
<td>Place on the bench and use at room temperature.</td>
</tr>
<tr>
<td>Antigen Presenting Buffer</td>
<td>Place on the bench and use at room temperature.</td>
</tr>
<tr>
<td>HRP Detection Reagents A and B</td>
<td>The 1 ml aliquots of these reagents can remain at -70°C until secondary antibody addition as detailed in the assay protocol.</td>
</tr>
<tr>
<td>HRP Stop Solution</td>
<td>Make sure that the box on top of the bottle is checked, indicating sulfuric acid has been added to the solution. Place the bottle on your bench and allow to warm to room temperature.</td>
</tr>
<tr>
<td>Vortex</td>
<td>Used for mixing reagents, it is helpful to keep one close to the assay area.</td>
</tr>
</tbody>
</table>
IV: G-LISA Assay Protocol

1. Mix 60 µl Lysis Buffer with 60 µl ice-cold Binding Buffer. Place on ice. This is the buffer blank.

2. Mix 12 µl Rho Control Protein with 48 ul Cell Lysis Buffer and 60 µl Binding Buffer. Place on ice. This is the positive control sample. Do not re-use.

3. Remove the number of strips required from Rho plate, place in strip holder, and place on ice. Return remaining strips to storage.

4. Keep the plate on ice and dissolve the powder in the wells with 100 µl ice-cold water. Detachment of the white powder pellet will not affect assay performance. Tap pellets to the bottom of the wells prior to resuspension.

5. Thaw the snap frozen cell lysates in a ROOM TEMPERATURE water bath. Immediately place on ice after thawing.

6. If not already equalized, add required amount of ice-cold lysis buffer to equalize all lysate concentrations. Calculate dilution factors required BEFORE thawing lysates.

7. Immediately aliquot sufficient lysate for duplicate (60 µl) or triplicate (90 µl) assays into fresh ice-cold microcentrifuge tubes.

8. Add an equal volume of ice-cold Binding Buffer to each tube. Vortex each tube for 3-5 s on a high setting and return tubes to ice.

9. Completely remove the water from the microplate wells as follows:

 Vigorously flick the plate to remove solution from each well, followed by a series of 5-7 vigorous pats onto paper towels. The complete removal of solution from wells between steps of the G-LISA is very important to avoid high background readings. At an absorbance of 490 nm, buffer-only wells should read between 0.10 – 0.40 and positive control wells should read between 0.7 – 1.0 (after subtraction of blank).

10. Return plate to ice. Immediately add 50 µl of equalized cell lysate to wells.

11. Pipette 50 µl of buffer blank control into duplicate wells.

12. Pipette 50 µl of RhoA positive control into duplicate wells.

13. Immediately place the plate on a cold orbital microplate shaker (400 rpm recommended, 200 rpm minimum) at 4°C for exactly 30 min.

14. During the incubation, dilute anti-RhoA primary antibody to 1/250 in Antibody Dilution Buffer (add 2 µl of antibody to every 500 µl Antibody Dilution Buffer). Note: The final volume of 500 µl is adequate for one strip (8 wells).

15. After 30 min, remove the solution from the wells and wash twice with 200 µl Wash Buffer at room temperature using a multi-channel pipettor. Do not leave plate unattended at this time. Vigorously remove the Wash Buffer after each wash as
described in step 9.

16. Place plate on the bench.

17. **Immediately pipette 200 µl of room temperature Antigen Presenting Buffer into each well using a multi-channel pipettor and incubate at room temperature for exactly 2 min.**

18. Vigorously flick out the Antigen Presenting Buffer as described in step 9.

19. Immediately wash the wells **three times** with 200 µl of room temperature Wash Buffer as described in step 9.

20. Add 50 µl of diluted anti-RhoA primary antibody to each well and leave the plate on the orbital microplate shaker (200-400 rpm) at room temperature for 45 min.

21. During primary antibody incubation, dilute the secondary HRP labeled antibody to 1/62.5 in Antibody Dilution Buffer (add 8 µl of antibody to every 500 µl Antibody Dilution Buffer). **Note:** The final volume of 500 µl is adequate for one strip (8 wells).

22. Vigorously flick out the anti-RhoA primary antibody as described in step 9.

23. Immediately wash the wells **three times** with 200 µl of room temperature Wash Buffer as described in step 9.

24. Add 50 µl of diluted secondary antibody to each well and leave the plate on a microplate shaker (200–400 rpm) at room temperature for 45 min.

25. During secondary antibody incubation, thaw an aliquot of HRP detection reagents A and B in a room temperature water bath and remove as soon as they are thawed. Do not mix.

26. Immediately prior to the end of the secondary antibody incubation, mix HRP detection reagents A and B in equal volumes (50 µl of A/B mixture per well is needed). Protect mixture from light. Discard unused solution.

27. Vigorously flick out the secondary antibody as described in step 9.

28. Wash the wells **three times** with 200 µl of room temperature Wash Buffer as described in step 9.

29. Pipette 50 µl of the mixed HRP detection reagent into each well and incubate at 37°C for 10-15 min.

30. Add 50 µl of HRP Stop Buffer to each well.

31. Check that the wells are free of bubbles; if not, remove before continuing.

32. Read the signal by measuring absorbance at 490 nm using a microplate spectrophotometer. Designate Lysis Buffer only wells as the assay Blank.
V: Troubleshooting

<table>
<thead>
<tr>
<th>Observation</th>
<th>Possible cause</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| Weak or no signal in all wells. | 1. Slow processing of samples or processing > 4°C.
2. Wells dried out during experiment.
3. Plate became damp during storage.
Well contents will appear sticky and opaque.
4. A step or component of the assay was omitted.
5. Insufficient HRP reaction time. | 1. Process samples quickly on ice. Snap freeze aliquots.
2. Do not remove the solution in the wells unless the next solution is ready.
3. Store the plate in the desiccant bag with the bag securely sealed. Keep the cover on the plate. If wells appear sticky and opaque, the plate can no longer be used.
4. Confirm with checklist that all reagents were added.
5. Develop for 10-15 min at 37°C. HRP Stop Solution should be added prior to reading at 490 nm. |
| High signal in all wells. | 1. Antibody concentration is too high.
2. Washes were insufficient. | 1. Follow the recommended dilution in protocol. If still too high, an antibody titration is necessary to optimize your results.
2. Follow washing protocol. |
| High background readings (>0.25). | 1. Inefficient removal of solutions from G-LISA wells. | 1. Background should read between 0.10 – 0.25. Vigorous flicking and patting of the inverted plate is required to completely remove solutions from the wells after each step is complete. See G-LISA instructional video for details. |
| Induced sample does not give significant signal increase. | 1. Poor inducer activity.
2. Technique not rapid or cold enough.
3. Too much extract in the wells or the concentration of extract is too high.
4. The endogenous GTP-RhoA level is too high.
5. Tissue culture cells not correctly serum-starved.
6. Temperature of lysis and incubation is not 4°C.
7. The Binding buffer is not pre-cooled at 4°C. | 1. Purchase a fresh vial of inducer.
2. Confirm instructions were followed using the Experiment Record Sheet (see Technical Guide).
3. The linear range of the assay is 0.05 – 2 ng RhoA.
4. Titrate down the amount of extract to be added.
5. Details of how to serum starve cells are given in Supporting Documents. It is a good idea to stain cells with phalloidin to qualitatively determine success of serum starvation and induction.
6. Lyse cells on ice and keep all cell lysis reagents on ice.
7. Make sure the buffer was stored in the fridge and kept on ice before use. |
| Significant variation between replicate samples. | 1. Incorrect volume of solutions for each step added in the wells.
2. Inaccurate pipetting.
3. Did not vortex lysates after Binding Buffer addition. | 1. Follow the instruction for recommended volume in the manual.
2. Use a multi-channel pipettor.
3. Binding Buffer is viscous and requires a vortex step to mix efficiently with lysate. |
| Positive control not working. | 1. Positive control protein was re-stored after reconstitution. | 1. Use a fresh tube of RhoA positive control protein each time. There are 12 per kit. |
Limited Use Statement

The G-LISA® kits are based on technology developed at Cytoskeleton Inc. and are the subject of patent applications assigned to Cytoskeleton Inc. (Patent# 7,763,418 B2). The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of product and components of product in research conducted by the buyer. The buyer cannot sell or otherwise transfer this product or any component thereof to a third party or otherwise use this product or its components for commercial purposes. Commercial purposes include, but are not limited to: use of the product or its components in manufacturing; use of the product or its components to provide a service; resale of the product or its components.

The terms of this Limited Use Statement apply to all buyers including academic and for-profit entities. If the purchaser is not willing to accept the conditions of this Limited Use Statement, Cytoskeleton Inc. is willing to accept return of the unused product with a full refund.