NAME AND INTENDED USE

Anti-Sm is an indirect solid phase enzyme immunoassay (ELISA) for the quantitative measurement of IgG class autoantibodies against Sm in human serum or plasma. The assay is intended for in vitro diagnostic use only as an aid in the diagnosis of Systemic Lupus erythematosus.

SUMMARY AND EXPLANATION OF THE TEST

Rheumatoid autoimmune diseases are often associated with the occurrence of autoantibodies against several nuclear or cytoplasmatic antigens.

In patients with Sjögren-Syndrome antibodies against SS-A and SS-B often occur in combination. The anti SS-A protein passes the placenta and may cause the development of SLE in neonates.

Each class of immunoglobulins causes a specific immunofluorescent pattern. Basically immunofluorescence titers correlate with the quantitation of IgG antibodies but the concentrations may vary considerably within each titer. Quantitation of IgG class antibodies extensively correlates with the diseases' activity. This makes it superior to immuno-fluorescence using Hep2 cells. The IF with Crithidia lucilliae sometimes results in deviating values.

Today the best investigated immunoreactive antigens are double-stranded DNA (dsDNA), single stranded DNA (ssDNA), Sm (Smith), sn-RNP (small nuclear ribonucleoprotein particles), the complex RNP/Sm which is stabilized by ribonuleic acid as well as SS-A (Ro) and SS-B (La). The antigen Scl 70, a 70 kD molecular weight protein is associated with scleroderma.

In rheumatoid autoimmune diseases various profiles of autoantibodies to these antigens can be detected. In a high incidence they are related to active and inactive Systemic Lupus erythematoses, mixed connective tissue diseases (Sharpe Syndrome), rheumatoid arthritis, Sjögren-Syndrome, Scleroderma, photosensitive dermatitis and drug-induced lupus.

In Lupus patients typically anti-dsDNA antibodies can be detected. Patients without these antibodies very often show anti-ssDNA antibodies and anti-SS-A and anti-SS-B are present. A strong correlation between antibody concentration and severity of the disease has been observed with higher antibody concentrations in active phases of the disease. Thus quantitation is more informative compared to simple titering by immunofluorescence.

Most of these parameters are not specific for just one disease but they occur in various combinations. The pattern of different antibody combinations and their concentration together with the whole clinical picture of the patient are helpful diagnostic tools in the assessment of rheumatoid autoimmune diseases.

The following graph gives brief information on the complexity of autoimmune diseases, occurring antibodies. It is not designed as a diagnostic schedule or program for ongoing diagnostic profiles.
PRINCIPLE OF THE TEST
Highly purified Sm is bound to microwells. Antibodies against this antigen, if present in diluted serum or plasma, bind to the respective antigen. Washing of the microwells removes unspecific serum and plasma components. Horseradish peroxidase (HRP) conjugated anti-human IgG immunologically detects the bound patient antibodies forming a conjugate/antibody/antigen complex. Washing of the microwells removes unbound conjugate. An enzyme substrate in the presence of bound conjugate hydrolyzes to form a blue color. The addition of an acid stops the reaction forming a yellow end-product. The intensity of this yellow color is measured photometrically at 450 nm. The amount of color is directly proportional to the concentration of IgG antibodies present in the original sample.

WARNINGS AND PRECAUTIONS
1. All reagents of this kit are strictly intended for in vitro diagnostic use only.
2. Do not interchange kit components from different lots.
3. Components containing human serum were tested and found negative for HBsAg, HCV, HIV1 and HIV2 by FDA approved methods. No test can guarantee the absence of HBsAg, HCV, HIV1 or HIV2, and so all human serum based reagents in this kit must be handled as though capable of transmitting infection.
4. Avoid contact with the TMB (3,3',5,5'-Tetramethyl-benzidine). If TMB comes into contact with skin, wash thoroughly with water and soap.
5. Avoid contact with the Stop Solution which is hydrochloric acid (1 M). If it comes into contact with skin, wash thoroughly with water and seek medical attention.
6. Some kit components contain Proclin 300 as preservative. When disposing reagents containing Proclin 300, flush drains with copious amounts of water to dilute the components below active levels.
7. Some kit components contain Proclin 300 as preservative. When disposing reagents containing Proclin 300, flush drains with copious amounts of water to dilute the components below active levels.
8. Wear disposable gloves while handling specimens or kit reagents and wash hands thoroughly afterwards.
9. Do not pipette by mouth.
10. Do not eat, drink, smoke or apply makeup in areas where specimens or kit reagents are handled.
11. Avoid contact between the buffered Peroxide Solution and easily oxidized materials; extreme temperature may initiate spontaneous combustion.

Observe the guidelines for performing quality control in medical laboratories by assaying controls and/or pooled sera. During handling of all kit reagents, controls and serum samples observe the existing legal regulations.

CONTENTS OF THE KIT
Package size: 96 determin.
Qty: 1

6 vials, 1.5 ml each combined Calibrators with IgG class Anti-Sm antibodies (A-F) in a serum/buffer matrix (PBS, BSA, NaN₃ <0.1% (w/w)) containing: IgG: 0; 12.5; 25; 50; 100; and 200 U/ml. Ready to use.

2 vials, 1.5 ml each Anti-Sm Controls in a serum/buffer matrix (PBS, BSA, NaN₃ <0.1% (w/w)) positive (1) and negative (2), for the respective concentrations see the enclosed package insert. Ready to use.

1 vial, 20 ml Sample buffer (Tris, NaN₃ <0.1% (w/w)), yellow, concentrate (5x).

1 vial, 15 ml Enzyme conjugate solution (PBS, PROCLIN 300 <0.5% (v/v)), (light red) containing polyclonal rabbit anti-human IgG; labelled with horseradish peroxidase. Ready to use.

1 vial, 15 ml TMBSubstrate solution. Ready to use.

1 vial, 15 ml Stop solution (1 M hydrochloric acid). Ready to use.

1 vial, 20 ml Washing solution (PBS, NaN₃ <0.1% (w/w)), concentrate (50x).

STORAGE AND STABILITY
1. Store the kit at 2-8 °C.
2. Keep microplate wells sealed in a dry bag with desiccants.
3. The reagents are stable until expiration of the kit.
4. Do not expose test reagents to heat, sun or strong light during storage and usage.
5. Diluted sample buffer and wash buffer are stable for at least 30 days when stored at 2-8 °C.
MATERIALS REQUIRED

Equipment
- Microplate reader capable of endpoint measurements at 450 nm
- Multi-Channel Dispenser or repeatable pipet for 100 µl
- Vortex mixer
- Pipets for 10 µl, 100 µl and 1000 µl
- Laboratory timing device
- Data reduction software

Preparation of reagents
- Distilled or deionized water
- Graduated cylinder for 100 and 1000 ml
- Plastic container for storage of the wash solution

SPECIMEN COLLECTION, STORAGE AND HANDLING
1. Collect whole blood specimens using acceptable medical techniques to avoid hemolysis.
2. Allow blood to clot and separate the serum by centrifugation.
3. Test serum should be clear and non-hemolyzed. Contamination by hemolysis or lipemia is best avoided, but does not interfere with this assay.
4. Specimens may be refrigerated at 2-8 °C for up to five days or stored at -20 °C up to six months.
5. Avoid repetitive freezing and thawing of serum samples. This may result in variable loss of autoantibody activity.
6. Testing of heat-inactivated sera is not recommended.

PROCEDURAL NOTES
1. Do not use kit components beyond their expiration dates.
2. Do not interchange kit components from different lots.
3. All materials must be at room temperature (20-28 °C).
4. Have all reagents and samples ready before start of the assay. Once started, the test must be performed without interruption to get the most reliable and consistent results.
5. Perform the assay steps only in the order indicated.
6. Always use fresh sample dilutions.
7. Pipette all reagents and samples into the bottom of the wells.
8. To avoid carryover contamination change the tip between samples and different kit controls.
9. It is important to wash microwells thoroughly and remove the last droplets of wash buffer to achieve best results.
10. All incubation steps must be accurately timed.
11. Control sera or pools should routinely be assayed as unknowns to check performance of the reagents and the assay.
12. Do not re-use microplate wells.

For all controls, the respective concentrations are provided on the labels of each vial. Using these concentrations a calibration curve may be calculated to read off the patient results semi-quantitatively.

PREPARATION OF REAGENTS

Preparation of sample buffer
Dilute the contents of each vial of the sample buffer concentrate (5x) with distilled or deionized water to a final volume of 100 ml prior to use. Store refrigerated: stable at 2-8 °C for at least 30 days after preparation or until the expiration date printed on the label.

Preparation of wash solution
Dilute the contents of each vial of the buffered wash solution concentrate (50x) with distilled or deionized water to a final volume of 1000 ml prior to use. Store refrigerated: stable at 2-8 °C for at least 30 days after preparation or until the expiration date printed on the label.

Sample preparation
Dilute all patient samples 1:100 with sample buffer before assay. Therefore combine 10 µl of sample with 990 µl of sample buffer in a polystyrene tube. Mix well. Controls are ready to use and need not be diluted.

TEST PROCEDURE
1. Prepare a sufficient number of microplate modules to accommodate controls and prediluted patient samples.
2. Pipet 100 µl of calibrators, controls and prediluted patient samples in duplicate into the wells.
3. Incubate for 30 minutes at room temperature (20-28 °C).
4. Discard the contents of the microwells and wash 3 times with 300 µl of wash solution.
5. Dispense 100 µl of enzyme conjugate into each well.
6. Incubate for 15 minutes at room temperature.
7. Discard the contents of the microwells and wash 3 times with 300 µl of wash solution.
8. Dispense 100 µl of TMB substrate solution into each well.
9. Incubate for 15 minutes at room temperature.
10. Add 100 µl of stop solution to each well of the modules and incubate for 5 minutes at room temperature.
11. Read the optical density at 450 nm and calculate the results. Bi-chromatic measurement with a reference at 600-690 nm is recommended. The developed colour is stable for at least 30 minutes. Read optical densities during this time.

Automation
The ORGENTEC Anti-Sm ELISA is suitable for use on open automated ELISA processors. The test procedure detailed above is appropriate for use with or without automation.

INTERPRETATION OF RESULTS

Quality Control
This test is only valid if the optical density at 450 nm for Positive Control (1) and Negative Control (2) as well as for the Calibrator A and F complies with the respective range indicated on the Quality Control Certificate enclosed to each test kit! If any of these criteria is not fulfilled, the results are invalid and the test should be repeated.

Calculation of results
For Anti-Sm a 4-Parameter-Fit with lin-log coordinates for optical density and concentration is the data reduction method of choice.

Recommended Lin-Log Plot
First calculate the averaged optical densities for each calibrator well. Use lin-log graph paper and plot the averaged optical density of each calibrator versus the concentration. Draw the best fitting curve approximating the path of all calibrator points. The calibrator points may also be connected with straight line segments. The concentration of unknowns may then be estimated from the calibration curve by interpolation.

Calculation example
The figures below show typical results for Anti-Sm ELISA. These data are intended for illustration only and should not be used to calculate results from another run.

<table>
<thead>
<tr>
<th>Calibrators</th>
<th>No</th>
<th>Position</th>
<th>OD 1</th>
<th>OD 2</th>
<th>Mean</th>
<th>Conc. 1</th>
<th>Conc. 2</th>
<th>Mean</th>
<th>dest.Conc.</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA</td>
<td>A1</td>
<td>B1</td>
<td>0.032</td>
<td>0.033</td>
<td>0.033</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>D1</td>
<td>0.313</td>
<td>0.305</td>
<td>0.309</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>STB</td>
<td>E1</td>
<td>F1</td>
<td>0.569</td>
<td>0.556</td>
<td>0.563</td>
<td>25</td>
<td>23</td>
<td>25</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>STD</td>
<td>G1</td>
<td>H1</td>
<td>0.948</td>
<td>0.940</td>
<td>0.944</td>
<td>51</td>
<td>50</td>
<td>51</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>STE</td>
<td>A2</td>
<td>B2</td>
<td>1.422</td>
<td>1.423</td>
<td>1.423</td>
<td>98</td>
<td>99</td>
<td>98</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>STF</td>
<td>C2</td>
<td>D2</td>
<td>1.989</td>
<td>1.973</td>
<td>1.981</td>
<td>204</td>
<td>199</td>
<td>201</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Interpretation of results
In a normal range study with serum samples from healthy blood donors the following ranges have been established with the Anti-Sm test:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Dilution</th>
<th>Observed [U/ml]</th>
<th>Expected [U/ml]</th>
<th>O/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:100</td>
<td>161.4</td>
<td>80.7</td>
<td>100 %</td>
</tr>
<tr>
<td>1</td>
<td>1:200</td>
<td>81.0</td>
<td>40.4</td>
<td>97 %</td>
</tr>
<tr>
<td>1</td>
<td>1:400</td>
<td>19.3</td>
<td>20.2</td>
<td>96 %</td>
</tr>
<tr>
<td>2</td>
<td>1:100</td>
<td>292.6</td>
<td>146.3</td>
<td>100 %</td>
</tr>
<tr>
<td>2</td>
<td>1:200</td>
<td>146.9</td>
<td>73.3</td>
<td>100 %</td>
</tr>
<tr>
<td>2</td>
<td>1:400</td>
<td>73.3</td>
<td>36.6</td>
<td>96 %</td>
</tr>
</tbody>
</table>

Positive results should be verified concerning the entire clinical status of the patient. Also every decision for therapy should be taken individually. It is recommended that each laboratory establishes its own normal and pathological ranges of serum Anti-Sm. The values above should be regarded as guidelines only.

PERFORMANCE CHARACTERISTICS

Parallelism
In dilution experiments sera with high IgG-antibody concentrations were diluted with sample buffer and assayed in the Anti-Sm kit.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Dilution</th>
<th>Observed [U/ml]</th>
<th>Expected [U/ml]</th>
<th>O/E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:100</td>
<td>51.4</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1:200</td>
<td>84.8</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1:400</td>
<td>157.2</td>
<td>2.6</td>
<td></td>
</tr>
</tbody>
</table>

Precision (Reproducibility)
Statistics for coefficients of variation (CV) were calculated for each of three samples from the results of 24 determinations in a single run for Intra-Assay precision. Run-to-run precision was calculated from the results of 5 different runs with 6 determinations of each sample:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Intra-Assay</th>
<th>Inter-Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Mean [U/ml]</td>
<td>CV (%)</td>
</tr>
<tr>
<td>1</td>
<td>51.4</td>
<td>4.1</td>
</tr>
<tr>
<td>2</td>
<td>84.8</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>157.2</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Sensitivity
The lower detection limit for Anti-Sm has been determined at 1.0 U/ml.

Specificity
The microplate is coated with Sm highly purified by affinity chromatography. The Anti-Sm test kit is specific only for autoantibodies directed to Sm. No crossreactivities to the other ENA-antigens have been observed.
Calibration
The assay system is calibrated against the internationally recognized reference sera from CDC, Atlanta USA, since no other international standards are available.

LIMITATIONS OF PROCEDURE
The Anti-Sm IgG ELISA is a diagnostic. A definite clinical diagnosis should not be based on the results of a single test, but should be made by the physician after all clinical and laboratory findings have been evaluated.
A negative Anti-Sm result does not rule out the presence of SLE.

INTERFERING SUBSTANCES
No interference has been observed with haemolytic (up to 1000 mg/dL), lipemic (up to 3 g/dL triglycerides) or bilirubin (up to 40 mg/dL) containing sera. Nor have any interfering effects been observed with the use of anticoagulants. However for practical reasons it is recommended that grossly hemolyzed or lipemic samples should be avoided.

REFERENCES

INCUBATION SCHEME

1. Pipet 100 μl calibrator, control or patient sample
 Incubate for 30 minutes at room temperature
 Discard the contents of the wells and wash 3 times with 300 μl wash solution

2. Pipet 100 μl enzyme conjugate
 Incubate for 15 minutes at room temperature
 Discard the contents of the wells and wash 3 times with 300 μl wash solution

3. Pipet 100 μl substrate solution
 Incubate for 15 minutes at room temperature

4. Add 100 μl stop solution
 Leave untouched for 5 minutes
 Read at 450 nm