DESCRIPTION

Source
Mouse myeloma cell line, NS0-derived
Leu22-Lys199
Accession # Q7TSL0

N-terminal Sequence Analysis
Leu22

Predicted Molecular Mass
21 kDa

SPECIFICATIONS

SDS-PAGE
19-22 kDa, reducing conditions

Activity
Measured in an anti-viral assay using L-929 mouse fibroblast cells infected with encephalomyocarditis (EMC) virus. Vogel, S.N. et al. (1982) Infect. Immunol. 38:681. The ED₅₀ for this effect is typically 0.2-1.2 ng/mL.

Endotoxin Level
<0.10 EU per 1 µg of the protein by the LAL method.

Purity
>95%, by SDS-PAGE with silver staining.

Formulation
Lyophilized from a 0.2 µm filtered solution in Sodium Acetate, NaCl and EDTA with BSA as a carrier protein. See Certificate of Analysis for details.

PREPARATION AND STORAGE

Reconstitution
Reconstitute at 200 µg/mL in sterile water.

Shipping
The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage
Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 3 months, -20 to -70 °C under sterile conditions after reconstitution.

DATA

Bioactivity

Recombinant Mouse IFN-κ (Catalog # 8437-MK) exhibits anti-viral activity in L-929 mouse fibroblast cells infected with encephalomyocarditis (EMC) virus. The ED₅₀ for this effect is typically 0.2-1.2 ng/mL.

BACKGROUND

Interferon (IFN)-κ is a member of the type I IFN family, which also includes IFN-α, -β, -ε, and -ω. Mouse IFN-κ is expressed at low levels in peritoneal macrophages and its expression is up-regulated by double-stranded (ds) RNA and IFN-γ (1). Mice over-expressing IFN-κ in pancreatic β cells developed type I diabetes, similar to what has been reported for mice over-expressing IFN-α, -β, and -γ (1-4). Mouse IFN-κ shares 68% and 30% amino acid sequence identity with rat and human IFN-κ, respectively. Human IFN-κ has been detected in keratinocytes, monocytes, and monocyte-derived dendritic cells and is reported to have contact-dependent antiviral activity (5-7). Human papillomavirus (HPV) 16 oncogene expression, which is necessary for the development of cervical cancer, has been shown to down-regulate human IFN-κ expression (8-11).

References: